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Abstract

We exploit the positive labor demand shocks driven by the fracking boom to investigate

whether improvements in economic opportunity reduce mortality. Using variation in geologi-

cal characteristics amenable to fracking within a difference-in-differences design, we find that

the boom reduces overall mortality for working-aged adults. We find no robust evidence of

reductions in external forms of death, such as suicide. Instead, the reductions are concen-

trated among more medically treatable causes, such as cardiovascular deaths. Finally, we find

evidence of increased health insurance coverage following the boom. Our results suggest that

increased access to medical care serves as an important mediator in the relationship between

labor market conditions and mortality.
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I Introduction

A growing body of research shows that the negative impacts of job loss permeate beyond the

labor market. The most pernicious of these effects center around health, as job loss increases

BMI, alcohol consumption (Deb et al., 2011), depression (Schaller and Stevens, 2015), and

even overall mortality (Eliason and Storrie, 2009). Much of these findings are focused on short-

term job loss, while a smaller literature looks at the mortality consequences of larger long-term

negative shocks. However, there is less evidence on how large and persistent increases in labor

demand impact mortality. Whether these shocks necessarily lower mortality is not ex ante

obvious, as short-term income receipt has been found to increase certain causes of death

(Ruhm, 2000; Moore and Evans, 2012). The lack of evidence is partly due to the relative

difficulty of finding quasi-exogenous variation that drives large changes in labor demand.

This paper overcomes that challenge and considers the effect of large, sustained, localized

labor demand shocks on mortality by exploiting variation in the intensity and location of

the hydraulic fracturing (fracking) boom. Feyrer et al. (2017) found that fracking led to the

creation of more than half a million jobs, with positive spillovers beyond the mining industry,

suggesting that the boom was transformative for local communities. To measure the mortality

effects of the fracking boom, we use restricted data from the National Vital Statistics System

(NVSS) to construct mortality rates at the county level from 1990 to 2018. The setting and

these data give us the rare opportunity to consider the effects of large-scale improvements in

economic opportunity on an important health outcome.

Estimating the effect of labor demand shocks on mortality requires addressing the en-

dogeneity of fracking production, which can manifest in several ways. Local regulations on

drilling operations can limit or outright ban fracking, and these decisions may be directly

related to factors that influence mortality, such as the strength of local labor markets and

investments in public health. Additionally, places that benefited from the boom may differ

from areas of the country with no fracking potential; for example, increasing opioid mortality

was initially more of a rural phenomenon (Rigg et al., 2018).

To address this issue, we use a county-level measure of the potential profitability of fracking
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operations provided by Rystad, a private energy company. Crucially, this profitability mea-

sure is based on detailed geographic surveys, rather than the potentially endogenous realized

level of extraction. Specifically, we employ a difference-in-differences (DD) strategy that com-

pares counties with higher geological potential for fracking to similar, adjacent counties with

lower potential. Mechanically, we compare counties in the top-quartile of our profitability

measure to others with lower potential within the same shale formation, referred to as shale

plays, which are the geological formations amenable to fracking. We also use the differential

timing of the adoption of modern fracking technologies across shale plays, which enabled pro-

ducers to build wells over under-surveyed and previously inaccessible fossil fuel deposits. We

find that while counties had similar levels of production and economic activity before fracking

adoption, there is a sizable separation in economic activity between treatment and control

counties after the boom begins. Overall, employment and earnings increase by 2-3% over the

6 years following the start of fracking, and the effects increase over time. Although men are

more likely to be employed in the mining and transportation sectors, we show that women

also experience earnings and employment gains, likely through local equilibrium effects such

as agglomeration (Allcott and Keniston, 2018).

We then show that overall mortality declines in boom counties for working-age individuals

(25-64) who directly benefit from the growth in labor demand. This group experiences a

reduction of 15 deaths per 100,000 people, constituting a 3% reduction in all-cause mortality.

The effects are strongest for older working-age men and women (45-64) who experience 3%

and 5% reductions, respectively. We further show that our mortality results are not driven by

differential trends in mortality before the fracking boom and are consistent across different

functional forms and ways of measuring mortality. Using age-adjusted death rates as our

outcome, we find a reduction of about 8.9 deaths per 100,000, which translates to 6.1% of

the overall decline in mortality between 2000-2018.4 We also demonstrate that migratory

responses are not driving our results. We find only modest changes in overall population or

age distributions between our treatment and control counties. Further, our mortality results

are robust when directly controlling for any compositional changes in the population and when

excluding counties within the Bakken shale play, which experienced a particularly large in-

4The age-adjusted death rate fell from 869 in 2000, the year before the first use of fracking, to 723.6 per 100,000 in 2018, the
end of our sample period: https://www.cdc.gov/nchs/data-visualization/mortality-trends/index.htm.
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migration of male workers (Wilson, 2020). Finally, we present a bounding exercise suggesting

that the mortality reductions we find cannot be reasonably explained by changing migration.

To better understand the mechanisms underlying the reduction in mortality, we explore

changes by more specific causes of death. We show that the fall in mortality attributable to

the fracking boom is driven by reductions among treatable, internal causes of death, with the

largest declines concentrated in the latest treatment years. This is consistent with Browning

and Heinesen (2012), who find that job loss increases the risk of internal mortality using

administrative data on workers and plant closures from Denmark. Similar to that study,

we find that circulatory/cardiovascular mortality drives the reductions in internal causes of

death. However, unlike previous studies on plant closures (Browning and Heinesen, 2012;

Venkataramani et al., 2020), macroeconomic downturns (Hollingsworth et al., 2017), or large

persistent negative shocks (Pierce and Schott, 2020), we do not find evidence of reductions

in external causes of death like suicides or drug overdoses, although our point estimates are

negative.

There are many potential mechanisms through which improved labor market opportuni-

ties could reduce internal causes of death. Additional income is associated with better health

(Chetty et al., 2016), and there are non-pecuniary benefits of employment, such as increased

self-worth (Noordt et al., 2014). Our findings also point to a health insurance mechanism.

Increases in health insurance coverage have led to sizable mortality declines, concentrated in

the same internal causes of death and among the same 45-64 year old age groups that we find

here (Borgschulte and Vogler, 2020; Goldin et al., 2021), and Schaller and Stevens (2015) find

that workers who lose a job that was their primary source of insurance reduce doctor’s visits

and prescription drug use.5 We do find suggestive evidence that health insurance coverage

increases in boom counties by matching our fracking data to county-level coverage estimates

constructed by the US Census Bureau. Sommers (2017) finds that a 1 percentage point in-

crease in coverage from state-level Medicaid (a public means-tested insurance program for the

poor) expansions reduced overall mortality for working-age adults by 1.3%, whereas Goldin et

al. (2021) finds a 1 percentage point increase in coverage led to a 5.7% reduction in mortality.

5Einav and Finkelstein (2023) also show that the duration of lack of insurance spells following a loss in coverage are remarkably
persistent.
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With the restrictive assumption that increased coverage drives our findings, our results would

imply a 1 percentage point increase in coverage leads to a 2.1% overall mortality decline,

falling between these reductions induced solely by health insurance expansions, supporting

this as a plausible mechanism.6 Moore and Evans (2012) find that increased income receipt

leads to short-run mortality spikes over the following several days; the alternative mechanisms

discussed here suggest that our results are driven by very different factors. Additionally, our

results are over a longer period and are based around a sharp, discontinuous, and unexpected

change in employment and earnings rather than receipt of expected payments. These suggest

increased access to medical care may serve as an important mediator between labor market

conditions and mortality, particularly in a US context where insurance coverage is tightly

linked to employment.

Our paper contributes to work on the effects of labor market outcomes on health and

mortality outcomes. While the existing literature has exploited plant closures to generate

quasi-experimental variation in labor market opportunities, we consider the effects of plant

(fracking well) openings on labor demand and mortality. It is not obvious ex ante whether

the effects we observe would be of similar magnitude to these studies. The shock and stress

of job loss are likely to have consequential, immediate health impacts, which may lead to

important non-linearities in the effect of employment changes on health outcomes. Iizuka and

Shigeoka (2021) finds that demand responses to price increases for child healthcare are twice

that of the change induced by price decreases, suggesting increases in income and coverage

may not induce as dramatic changes in behavior as decreases along those dimensions.

We can compare our results to the closest papers in this literature to our study. Sullivan and

VonWachter (2009) exploit plant closings in Pennsylvania and find that sustained employment

and earnings losses of around 10% after a decade lead to a 17% increase in mortality, with

the effects being larger for displaced workers under 55. Using Danish administrative data,

Browning and Heinesen (2012) finds that job displacement leads to slightly smaller earnings

declines over a 20-year window following the initial job loss and that overall mortality increases

by almost half the amount found by Sullivan and VonWachter (2009). Similar to us, Browning

6While we do not directly test whether coverage increases stem from Medicaid versus employer-sponsored insurance, we find
a reduction in Supplemental Nutrition Assistance Program participation, suggesting these coverage gains are likely driven by
employer-sponsored insurance rather than expanded public programs.
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and Heinesen (2012) find that changes in mortality from circulatory disease are an important

dimension for explaining the overall mortality results. The reductions in mortality we observe

relative to the change in earnings and employment are similar in magnitude, suggesting a

symmetric response.

Our second contribution is to the literature on “deaths of despair” by providing some of

the first evidence of the effects of a large positive shock to local labor markets. The Case

and Deaton (2017) hypothesis that labor market conditions matter, especially over the long

run and at the time of entry into the labor market, suggests that the fracking boom may

lead to reductions in “deaths of despair,” and implies that this overall decline may be driven

by reductions in external causes of death. However, we do not find any robust evidence of

reductions in external causes broadly or deaths of despair specifically. Several papers find

that increased opioid mortality is largely driven by supply-side changes in opioid availability

(Currie and Schwandt, 2020; Alpert et al., 2022), suggesting that there is less of a role for

increased economic opportunity to play in reducing deaths of despair.

Our paper is also related to the literature within and outside of economics that directly

assesses the health effects of hydraulic fracturing. Literature here has found adverse health

impacts on infant and adult health from fracking-induced air and water pollution (Denham et

al., 2021; Hill and Ma, 2022), and Jemielita et al. (2015) and Denham et al. (2019) show that

increased fracking correlates with higher hospitalization rates. Closest to our work, Boslett

and Hill (2022) uses two-way fixed effects panel regressions to find that deteriorating economic

conditions from declining coal mining are associated with increases in mortality, but fracking is

associated with higher suicides and otherwise has limited impacts on mortality. Our findings of

decreased mortality do not directly contradict this literature. Instead, we aim to estimate the

mortality response due to the economic improvements generated by the boom, rather than to

measure the direct negative health impacts from fracking production directly. Our empirical

strategy compares only those counties with higher to lower fracking potential within the same

shale play, meaning that both treatment and control groups experience fracking production.

This minimizes the potential of capturing the negative impacts of fracking production itself in

our estimates. We confirm this by not finding any mortality increases among groups that are
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more susceptible to heightened mortality and morbidity from air and water pollution, such

as infants or adults over 65 years of age.7 In this way, our findings are more closely related

to work that exploits the fracking boom to test how economic opportunity impacts other

behavior such as human capital investment (Cascio and Narayan, 2015), family formation

(Kearney and Wilson, 2018), and crime (Street, 2018).8 Our results show that labor market

gains from positive economic shocks can lower certain forms of mortality through similar

mechanisms as job loss, such as health insurance access and psychological well-being.

II Background on the Fracking Boom

Oil and natural gas firms drill traditional wells vertically above large concentrated fos-

sil fuel reservoirs. By contrast, unconventional fracking wells exploit far more dispersed

reserves that remain trapped within sedimentary, organic-rich rock formations called shale

plays. Companies began limited drilling of these shale plays as early as the 1960s, but the low

permeability of the shale prevents oil and gas from pooling into the reservoirs conventional

wells are typically drilled over, rendering traditional production techniques unprofitable.

New advancements in horizontal drilling and hydraulic fracturing enabled the fracking

boom. Horizontally drilled wellbores can access large areas of shale at once, obviating the

need to drill many vertical wells. Fracking also involves injecting a highly pressurized slurry

into the wellbore, which fractures the surrounding shale and allows the encased oil and natural

gas to flow freely. While the presence of a shale play is a necessary condition for fracking,

actual production is sensitive to several geological factors, including the permeability of the

rock, as well as the size and density of the hydrocarbon deposits.

Oil and gas firms did not immediately adopt the new technologies that enabled widespread,

profitable fracking, partially because private and academic researchers were initially unaware

of the true magnitude of the hydrocarbon reserves. For example, the US Geological Survey

estimated in 2002 that the Marcellus Shale (covering WV, PA and NY) held two trillion cubic

7We also further complement work such as Black et al. (2021) that discuss the difficulties in establishing causal relationships
from fracking by demonstrating that when we alternatively compare fracking regions to non-fracking regions, we find strong
evidence of confounding pre-trends in mortality.

8Our paper is also related to previous literature exploiting economic conditions generated by the coal boom and bust to test
economic models of human capital (Black et al., 2005) and fertility choice (Black et al., 2013).
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feet of recoverable natural gas. By 2011, these estimates had risen to 84 trillion cubic feet,

based on new surveys; this large correction highlights how little understood the shale deposits

were before they became exploitable. Figure 1 Panel B plots the dramatic increase in fracking

production over time from 2000, when it accounted for barely any of total US oil and natural

gas production, to 2014, when it overtook the output of more traditional methods.

Both academic researchers and the popular press have linked the “fracking revolution”

to labor market opportunities. Maniloff and Mastromonaco (2017) review various studies of

both the local and national earnings gains attributable to fracking, and document estimates of

wage growth which range from 2.6% to 16.75%. While the initial job growth is concentrated

in the mining industry, the operation of even a single fracking well involves over 6,000 one-

way trucking trips (Xu and Xu, 2020) to haul the water and sand needed for the hydraulic

fracturing process. Finally, Allcott and Keniston (2018) find that the manufacturing sector

actually grows overall following natural resource booms in the US (driven by upstream and

locally traded sub-sectors), and so there is little evidence of negative spillovers caused by a

“Natural Resource Curse”.

III Data

We aggregate all our data to the county-year level. We use county definitions as of the

2000 decennial census,9 and our main sample includes data from 1990 to 2018. As we discuss

below, our empirical strategy only compares counties over the same shale play; thus, we omit

counties that do not intersect with a shale play from our main sample. We further omit two

Texas counties with several years of missing mortality data, including Loving, Texas, which

has fewer than 100 residents as of the 2020 Census. This leaves us with 519 counties (112 of

which are in the top-quartile of the within-play RPI) and 29 years of data.

9If county boundaries change over time, we aggregate to the 2000 boundary definitions using initial population weights. For
example, in 2001, Broomfield, Colorado was created from parts of Adams, Boulder, Jefferson, and Weld counties, and the Census
Bureau reports the resulting population loss for each of the original counties. Source: https://www.ddorn.net/data.htm
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III.A Fracking Data

The U.S. Energy Information Administration (EIA) provides shape files defining every

known shale play, which we use to identify counties that have any fracking potential. There

are sixteen Shale Plays in our sample, which constitute contiguous counties across different

regions of the U.S. We obtained well-level production data from Enverus, a private oil and gas

software company, through their academic outreach initiative. These data include monthly

production levels and wellbore orientation, which we use to identify fracking wells.10

To capture variation in fracking suitability within shale plays, we purchased the NASMaps

product from Rystad Energy, a private energy research company. The company produces a

Rystad “prospectivity index” (hereafter referred to as RPI), a continuous, non-linear measure

of how amenable a specific location within a shale play is to fracking production. Importantly,

this measure is not based on realized/actual fracking production, but only on the underlying

geological potential of an area. The index ranges from zero to five, with larger numbers

representing increased potential fracking yields. We aggregate this measure to the county

level, and we show which counties have any fracking potential (RPI greater than zero) in

Figure 1 Panel A. Since the methodology used to calculate the RPI is unique to each play,

the measure is not directly comparable across broad geographic areas.11 We therefore follow

Bartik et al. (2019) and identify counties that are in the top-quartile of the prospectivity index

within each shale play, and these counties (which are more likely to be the most productive:

our treatment counties) are shaded darker in Figure 1 Panel A.

While Bartik et al. (2019) has shown that counties within the same shale play are more com-

parable along many economic dimensions, our analysis requires that these counties be compa-

rable along dimensions that are relevant to our mortality outcomes. We confirm whether our

control counties provide a good counterfactual to our top-quartile counties by comparing them

along various county-level characteristics from the 1990 Census (well before the technology

that enabled fracking was first applied).

10We identify fracking wells as any well with a non-vertical wellbore orientation. DrillingInfo, the production database provided
by Enverus, is also used by the EIA for their official releases concerning US production.

11After forming a zero to five sub-score index based on the parameters available for a given play, the final index is a weighted
average of each sub-score. As an example, these parameters include lime thickness and lime depth for the Mississippian Lime
shale play, and thickness, depth, and thermal maturity for the Utica shale play.
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Different county characteristics are associated with differential mortality risk. For instance,

educational and racial gradients in mortality have been well-documented in the literature

(Case and Deaton, 2022). Similarly, areas with higher manufacturing employment have ex-

perienced different mortality trajectories due to long-run deindustrialization (Autor et al.,

2019). In addition to these factors, we also control for median household income, the share of

the population that are veterans, and other demographic information. Controlling for these

baseline characteristics can improve precision and ameliorate worries that our estimates are

being driven by factors besides the fracking boom. Table 1 presents baseline 1990 summary

statistics for top-quartile and other shale play counties, and shows that there are no statisti-

cally significant differences (in terms of 1990 characteristics) between treatment and control

counties before the boom. Of course, given the nature of our empirical strategy, it is the

trends rather than the level differences that matter, which we will explore in our analysis.

We show these same baseline differences across all shale play counties and the rest of the

lower 48 states in Appendix Table B.1. Shale play counties are poorer and more white (91%)

than the rest of the country, although residents are more likely to be married. Shale play

counties also have a lower age-adjusted death rate per 100,000 residents in 1990.

In addition to the cross-sectional variation in fracking potential, the timing of fracking

adoption varied across shale plays. The gray bars in Figure 1 Panel B indicate the number

of shale plays for which fracking potential became public knowledge in that year, which we

take from Bartik et al. (2019). While firms began exploratory adoption of new fracking

technologies in the Barnett shale play in Texas as early as 2001, more well-known fracking

hotspots like the Barnett shale play in North Dakota and the Marcellus Shale plays in the

Mid-Atlantic did not begin widespread fracking production until 2007 and 2008, respectively.

Despite an initial lag, top-quartile RPI counties produce substantially more than the other

three-quarters of shale play counties combined.

III.B Employment and Earnings Data

We use county-level data on earnings and employment from the Quarterly Workforce Indi-

cators (QWI) database, which is an aggregation of micro-level records from the Longitudinal
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Employer-Household Dynamics (LEHD). These data are primarily based on unemployment

insurance earnings data from participating states12 available for a limited number of two-way

group tabulations, including sex-age and sex-education. We focus on aggregate changes to

employment and earnings instead of restricting attention to the natural resource extraction

industry. Previous work on agglomeration such as Greenstone et al. (2010) suggests that the

opening of large work sites may create positive spillovers for other industries, and Feyrer et al.

(2017) finds evidence for such spillovers in response to the fracking boom. We aggregate our

main variables of interest, average quarterly earnings and total quarterly employment to the

yearly level. Specifically, we take the simple average of employment, and the employment-

weighted average of earnings across all 4 quarters in a year.

III.C Mortality Data

We use a census of all deaths in the United States: the restricted-access version of the

National Vital Statistics System (NVSS) mortality files from 1990-2018. These data identify

basic demographic information, primary/additional causes of death, and the county of resi-

dence and occurrence. We follow Stevens et al. (2015) by separating all causes of death into

mutually exclusive categories based on whether the causes of death are internal (cancer, car-

diovascular, etc.) or external (homicides, motor vehicle accidents, etc.). For external causes of

death, we also include “deaths of despair”: suicides, drug-related deaths, and alcohol-related

deaths, using the definitions provided by the US Congress’ Joint Economic Committee. Since

our data span across the use of ICD-9 and ICD-10 codes for reporting causes of death, our

use of consistent, broad categories ensures comparability across time.

Our primary outcome is crude death rate, or the number of deaths per 100,000 working-

aged (25-64) individuals. We take these population data from estimates constructed by the

National Cancer Institute’s Surveillance, Epidemiology, and End Results (SEER) Program.

While the crude death rate is the total number of deaths for a specific demographic group

divided by the current relevant population, the age-adjusted death rate is a weighted aver-

12In the earlier years of our sample, The QWI has limited coverage, which leaves very few observations before 2002, after which
we have full coverage of every county in our main sample. The main earnings and employment results are robust to limiting the
sample to years when we have data on all shale play counties, as shown in Appendix Table B.6 and Appendix Table B.7.
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age of crude death rates across standard age categories, where the weights are the national

population shares in those age categories in 2000.

III.D Health Insurance Data

We explore changes in insurance coverage using data from the Small Area Health Insur-

ance Estimates (SAHIE) Program. The SAHIE is administered by the US Census Bureau,

which produces model-based estimates at the county level by combining data from multiple

sources, including the American Community Survey (ACS), federal tax returns, Supplemental

Nutrition Assistance Program (SNAP) participation, Medicaid and Children’s Health Insur-

ance Program (CHIP) participation, and Census population estimates. It is the only source

for single-year estimates of health insurance coverage for all US counties. We note that the

SAHIE data become available only from 2008 onward with consistent methodology, which

means we lack pre-boom coverage data for earlier adopting shale plays. Given this, we match

the SAHIE data to counties in the six shale plays that begin fracking after 2008.

We focus on the estimated percentage of the county population ages 18-64 with health

insurance coverage to best approximate employer-provided insurance coverage for working-

age adults. One limitation of the SAHIE data is that they do not distinguish between public

and private insurance coverage, so we are unable to identify our ideal outcome of interest

directly.

IV Empirical Strategy

Advancements in horizontal drilling and slick water fracturing enabled the extraction of

previously inaccessible reserves of oil and natural gas from shale plays. However, since the

level of production is endogenous with respect to local labor market characteristics and the

regulatory environment, simple comparisons using this measure may introduce bias. High-

productivity areas may have had upward trending economic growth which enabled more

widespread and earlier adoption of fracking technologies. In addition, areas that expanded
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fracking may have had different levels of pre-existing environmental conditions and/or zoning

regulations that may be correlated with factors that influence mortality, like pollutants such

as radon (Black et al., 2019) or the level of public investment. Further, the timing of fracking

adoption may reflect unobserved factors that also affect mortality. For instance, firms may

have prioritized drilling in plays with improving infrastructure, favorable regulatory policy

shifts, or underlying demographic trends that would have influenced health outcomes inde-

pendently of fracking. In addition, broader macroeconomic shocks, such as global energy

price movements, could have both shifted the economic incentives for adopting fracking and

indirectly influenced mortality through income channels.

Following the approach pioneered by Bartik et al. (2019), we use variation in the RPI to

account for these issues, which provides a straightforward approximation of the exogenous

variation within a play that determines the extraction potential of fracking wells, and therefore

the intensity of the positive labor demand shock. Combining this with temporal variation in

the initiation of fracking in each play leads to the following DD specification:

ycpt = β(Top-Quartilecp × Postpt) +
∑
t

Ψt(Iyear=t ×Xc,1990) + λc + γpt + ϵcpt (1)

where ycpt is the outcome of interest. Postpt is an indicator for whether shale play p had

adopted fracking by year t. Top-Quartilecp indicates whether county c is in the top-quartile of

the RPI for shale play p. Ψt captures the potentially time-varying effects of Xc,1990, a vector

of initial county-level characteristics.13 Our baseline specification uses the crude death rate as

the outcome variable. We also control for time-invariant county characteristics with county

fixed effects, λc. Regressions are weighted by the 2000 population and all standard errors are

clustered at the county level.

Including play by year fixed effects, γpt, captures play-year shocks and ensures our re-

sults are based on variation between counties within shale plays. These adjust for any con-

temporaneous events that might affect entire shale plays, such as regional economic cycles,

region-specific regulatory changes, or energy price fluctuations that both incentivized frack-

13All the variables shown in Table 1 are included as controls aside from the initial age-adjusted death rate.

12



ing adoption and potentially affected mortality through other channels. These effectively

aggregate estimates from each shale play.

Since the timing of fracking adoption varies across shale plays (Figure 1 Panel B), the

simple difference-in-differences coefficient is subject to composition bias as the number of

years post-treatment varies across the sample. We restrict the data to a balanced sample,

where the balanced sample is defined by whether every shale play experiences the same

number of lags and leads in event years. In the main mortality sample, we have data for each

play 11 years before treatment and 7 years post treatment (including the year of initiation

of fracking), or 18 event-years of data for each observation. We show the robustness of our

results to different sample selections and weights in the Appendix.

The identifying assumption of our DD model is that the control counties within plays

provide an estimate of the counterfactual time-path of mortality and labor market outcomes

had fracking intensity been lower in boom counties. While this assumption can never be

directly tested, we examine whether our treatment and control counties have the same pre-

treatment trends by running the following event study specifications where we replace the

Postpt indicator with a vector of event year indicators, omitting the event year before frack-

ing’s introduction:

ycpt =
∑
n̸=−1

βn(Top-Quartilecp ∗ Iyear−τp=n) +
∑
t

Ψt(Iyear=t ∗Xc,1990) + λc + γpt + ϵcpt (2)

where τp represents the time of initiation of fracking in a given play. The coefficients βn

trace out the difference in outcomes between top-quartile and other counties within a play,

in a given event year n relative to the omitted year. Given the large number of zeros in

many of the mortality outcomes, we also estimate exponential models of Equation (2) using

Poisson regressions to obtain semi-elasticity interpretations without the issues that arise from

log-like transformations of the outcome variables (Chen and Roth, 2024), as well as to test

the robustness of the pre-trend assumption to different functional forms (Wooldridge, 2023).
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A key feature of our identification strategy is that the RPI accurately predicts the highest

intensity boom counties in terms of actual production. Appendix Figure A.1 shows a flat,

almost nonexistent pre-trend in production followed by an immediate increase after the boom

begins, although production does not really begin to take off until the second and third

year after the adoption of fracking technologies.14 We also show that production increases

in a similar, albeit attenuated, manner whether we define treatment using our standard

top-quartile definition or whether we expand treated counties to include counties above the

median play-level RPI measure or simply look at a standard deviation shift in the actual

underlying RPI values. We can see that fracking production is nearly $400 million greater

in top-quartile counties six years after the boom begins, indicating a meaningful separation

between treatment and control counties.

V Results

V.A Earnings and Employment

Figure 2 shows the gender-specific results of the fracking boom for earnings and employ-

ment using Equation (2). Panel A and Panel B report estimates for the log of average

earnings for all employees, while Panel C and Panel D show results for the log of the average

employment-to-population ratio with the associated 95% confidence intervals. Results from

estimating Equation (1) are shown above each event study.

Overall, Figure 2 shows that earnings and employment increased for both men and women

following the fracking boom, and continued to do so for up to six years after the adoption

of fracking technologies. While the average effects show a 3% increase in earnings and em-

ployment for men, the coefficients for later event-years are larger and settle closer to 3-5%.

Since our specification only uses within-play variation, and because fracking production is

also increasing in our control counties (Figure 1 Panel B), our results do not represent frack-

ing’s overall impact, but instead leverage variation in plausibly exogenous production ability.

14Since treatment timing is determined by when fracking became public knowledge within a play, and because hydrocarbon
deposits within shale plays were relatively under-surveyed, an initial lag in production is not surprising.
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Thus, these labor market effects are likely smaller than the overall impact of fracking.

Although fracking is an almost entirely male-dominated field, we find wage and employment

growth for women.15 For women, both earnings and employment increase by around 2%.

However, both Bartik et al. (2019) and Feyrer et al. (2017) have shown that the boom led

to substantial positive spillovers to other industries, with Feyrer et al. (2017) finding that in

2012, half of the overall employment increases attributable to the boom were actually sectors

not directly related to extraction, while 30% were concentrated in the transportation sector

and only 20% of the overall increase in employment came from the mining sector.

Kearney and Wilson (2018) also found differential sizes of the male and female labor

demand shocks in response to the boom, and they found slightly larger effects for male

earnings (4%) and the employment-to-population ratio (5%) than that of our results. We show

in Appendix Table B.6 and Appendix Table B.7 that when we do not include county-level

population weights our results are roughly similar to Kearney and Wilson (2018), suggesting

that some more sparsely populated counties experience the largest relative production booms

which men were differentially able to benefit from.

V.B Mortality Results

We now consider the reduced-form effects of fracking amenability on mortality. Table

2 looks at overall mortality. The dependent variable is the crude death rate per 100,000

working-aged individuals. Panel A uses the overall rate, and Panels B and C use male and

female specific mortality rates, respectively. The first column only includes county and play-

by-year fixed effects, the second column adds controls for the baseline percent of the county

population that is white, in manufacturing, and that have a high school degree, three factors

strongly associated with mortality trends over this period, and the third column adds all the

remaining controls from Table 1.

Column (1) shows a negatively signed but statistically insignificant effect on mortality.

However, including the baseline controls in column (2) increases the magnitude to a decline

15According to the US Bureau of Labor Statistics, men made up over 84% of the workforce in mining, quarrying, and oil and
gas extraction industries as of 2019.
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of 14.7 deaths per 100,000, suggesting that any confounding was attenuating our coefficients

towards zero. Table 1 shows that top-quartile counties had a larger share of non-high school

graduates, non-white populations, and manufacturing employment than that of their lower

quartile counterparts. While these differences were insignificant, these factors may positively

influence subsequent mortality trends, creating a positive bias working against any negative

effect. Including the remaining controls in column (3) does not have a strong effect on the

coefficient, showing an overall mortality decline by 15 deaths per 100,000 in top-quartile

counties relative to their control counterparts. Panels B and C show that the male mortality

effects drive the sensitivity to the baseline controls. Column (3) shows a decrease of 17 deaths

per 100,000 and 14 deaths per 100,000 working-aged men and women, respectively. Given

the lower overall mortality rates for women compared to that of men (reported in the bottom

row of the Panels), this suggests a 3.1% decline in mortality for men and a 4.2% reduction

for women.16

Figure 3 Panel A plots the estimates from equation (2) for overall mortality with their

associated 95% confidence intervals. Panels B and C separately examine overall mortality for

men and women, respectively. Overall, there is a reassuring absence of differential trends in

mortality between treatment and control counties before the initiation of fracking.17 After

fracking, there begins a decline in overall mortality. There is an imprecisely estimated decline

of 2 to 5 deaths per 100,000 starting 2-3 years following the initiation of fracking, which grows

to a statistically significant reduction of 21 deaths per 100,000 six years after fracking.

Panel B looks at men. While the point estimates suggest a decline in overall mortality of 20

deaths per 100,000 six years after fracking, the individual point estimates are not statistically

significant at the 5% level. For women, Panel C shows a statistically significant decline in

overall mortality of 19 deaths per 100,000 4 years after the initiation of fracking, followed

by a 22 per 100,000 decline after six years. The timing of these reductions in mortality are

consistent with Sullivan and Von Wachter (2009) who find that displaced workers have a high

and persistent risk of death 4-5 years after job loss.

16However, we fail to reject a Wald test of whether the effects for men and women are statistically indistinguishable from each
other.

17A joint test on whether all pre-event year coefficients are statistically significantly different from zero fails to reject (p-value
= .4).
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Given the sensitivity of the coefficients to the addition of base controls in Table 2, albeit

suggesting that any influence they capture attenuates our estimates towards zero, we also

visually inspect pre - trends and dynamics of overall mortality without including any controls

Appendix Figure A.3. These reassuringly confirm an absence of pre-trends prior to the

initiation of fracking, and show a similar but less precisely estimated reduction in mortality

in the post years. Six years after the initiation of fracking, the coefficient shows a statistically

significant reduction of 19 deaths per 100,000, similar to the change in Figure 3.

We now examine whether the results are robust to using the age-adjusted mortality rate

discussed in Section III.C as the dependent variable. Column (1) of Appendix Table B.8

shows that the overall age-adjusted mortality rate fell in top-quartile counties relative to

their shale play counterparts by 8.9 deaths per 100,000 people, a 1% decline in terms of the

sample period mean. The remaining columns show that the coefficients are negative and of

similar magnitudes to the combined death rate for men and larger in magnitude for women, in

line with the main specification. Appendix Figure A.2 then shows the event study estimates

from (2) using the age-adjusted mortality rate. Both are similar to our main specification. We

next estimate a nonlinear Poisson model of Equation (2). Appendix Figure A.4 reaffirms the

absence of pre-trends and decline in mortality from the main results, lending further support

to the parallel trends assumption (Wooldridge, 2023). The DD coefficients show a 2.8%

reduction in the death rate for men and a 3.6% reduction for women.18 Finally, Appendix

Figure A.20 shows that our findings are robust to running unweighted specifications.

While we do not explicitly instrument overall earnings or employment, we can consider the

implied elasticity of mortality with respect to the observed change in either variable. However,

we caution that these comparisons may be misleading because changes in both income and

employment are occurring at the same time, so simply scaling our mortality results by the

magnitude of one of these changes does not consider all the pecuniary and non-pecuniary

changes as a result of a labor demand shock at once. If we take the 3% decline in the overall

working-age mortality rate from the reported coefficient on top of Appendix Figure A.4 and

the 2.7% increase in overall wages from column (3) of Appendix Table B.6, our estimates

suggest that a 1% increase in wages leads to an approximately unit-elastic 1.1% decline in

18Following the recommendation of Chen and Roth (2024), we report transformed coefficients eβ̂ − 1.
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overall mortality.

To further understand which groups drive our results, we follow Stevens et al. (2015) and

create broadly defined age groups (under 25, 25-44, 45-64, and 65 and older) corresponding

to different parts of an individual’s working life. These age ranges also align with common

mortality delineations that offer interpretative value. For example, the literature on health

insurance and mortality often focuses on the middle age range of 45-64 since they are particu-

larly susceptible to higher mortality from lack of insurance coverage (e.g. Goldin et al., 2021).

Further, cardiovascular mortality is particularly sharp among those 45 and older (Benjamin

et al., 2017), whereas drug overdoses have risen sharply for 25-44 year old men (CDC, 2023)

and suicides among youth under 25 (Marcotte and Hansen, 2024). Appendix Table B.2 shows

estimates from Equation (1) and Appendix Figures A.5, A.6, and A.7 plot estimates from

Equation (2) using these age ranges for all, male, and female respectively. Working-aged

populations drive the mortality decline. Although we find negative coefficients for younger

working-age individuals, mortality reductions are driven by those aged 45–64.19 There is a

decline of 27 and 21 deaths per 100,000 men and women aged 45-64, respectively. These sug-

gest the mortality reductions are driven by the types of deaths found to decrease in response

to increased access to medical care. In the next section, we explore this further by examining

specific causes of death.20

V.C Heterogeneity by Cause of Death

Internal causes of death, such as circulatory and respiratory illnesses, increase following

job displacement, likely due to stress and lack of health insurance/health care utilization

to manage chronic conditions (Browning and Heinesen, 2012; Schaller and Stevens, 2015),

whereas external causes, such as homicides, traffic accidents, and deaths of despair, may have

a different data generating process. Here, we consider whether the declines in mortality are

driven by internal causes of mortality, such as cardiovascular mortality, or by external causes,

such as suicides and homicides. Panels A and B of Figure 4 present estimates of Equation

19A Wald test rejects the equality of the coefficients across the 25-44 and 45-64 regressions (p-value = .0003).
20Note, Denham et al. (2021) finds an increase in hospitalizations for those 65-99 (particularly for women) with additional

fracking production. Our null findings here are likely due to both treatment and control counties experiencing some degree of
fracking, exposing this susceptible age group to the same pollutants.
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(2) for the death rates for internal and external causes of death, respectively, with the DD

estimates from Equation (1) presented above. The decline in mortality is driven by declines in

internal causes. Top-quartile counties experience a decline of 13.6 internal causes of death per

100,000 relative to other counties. Appendix Figure A.8 breaks down these deaths by gender,

again confirming that the main mortality effects are driven by internal causes of death, with

a reduction of 14.7 and 12.6 deaths per 100,000 men and women, respectively.21 Appendix

Figures A.10 and A.11 show the same results using our Poisson specification, showing that

the reductions translate to a 3.2% reduction for men and a 3.9% reduction for women.

In Figure 5, we separately consider event studies for cardiovascular mortality and non-

cardiovascular, internal mortality (e.g. cancer, kidney disease, etc.). There is a reduction

in cardiovascular mortality of 5 deaths per 100,000 and a reduction in non-cardiovascular

type internal mortality of 8 deaths per 100,000. While we fail to reject the test of equality

across the equations in Figure 5, the higher prevalence of non-cardiovascular type internal

mortality (247 versus 114 cardiovascular deaths per 100,000) in our sample suggests a larger

proportional decrease for cardiovascular mortality. The Poisson estimates in Figure A.12

confirm a reduction in the cardiovascular death rate of 5.3% compared to a 2.6% reduction

for other internal mortality.

Examining external causes of death, Appendix Figures A.9 and A.13 show no effect for

“deaths of despair”, albeit imprecisely estimated for drug overdoses. Finally, Appendix Figure

A.14 looks at specific types of internal (Panel A) and external (Panel B) causes for men and

women separately. We interpret this exercise as exploratory and suggestive, as increasing the

number of outcomes raises concerns over multiple hypothesis testing. Panel A shows statis-

tically significant declines in cardiovascular and kidney/urethra related deaths (renal failure,

kidney infections, etc.) for men, with mainly imprecisely estimated declines for women. In

Panel B, we find no statistically significant but mostly negatively signed changes in external

causes of death, except for traffic accidents. This is consistent with Moore and Evans (2012),

who find that traffic accidents are pro-cyclical.22

21Performing a Wald test across equations, we reject equality of parameters across internal and external deaths (p-value ≈ 0,
χ̃2 = 17.9). As earlier, we fail to reject that the effects on internal deaths are the same across genders (p-value = .5539).

22Blair et al. (2018) and Graham et al. (2015) find positive associations of traffic accidents with shale drilling ac-
tivity. Further, several law firms in Texas (https://www.daxgarzalaw.com/blog/fracking-and-oilfield-trucking-dangers/)
and Pennsylvania (https://www.rosenbauminjuryfirm.com/practice-areas/fracking-accidents-damages/fracking-related-truck-
and-transportation-accidents/) even specialize in fracking-related vehicle accidents. We explore this further in Appendix Table

19
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V.D Health Insurance

Why do we observe reductions in internal causes of death? While greater income has

been closely linked to life expectancy in the US (Chetty et al., 2016), fracking boom counties

experienced increases in both employment and income. While it is challenging to measure

the non-pecuniary benefits of employment such as reduced stress that have been linked to

employment opportunities (Marcus, 2013), we can look at one relevant mechanism: increased

health insurance coverage following the boom.23 Wherry and Miller (2016) finds substantial

increases in high cholesterol diagnosis following Medicaid expansion, and cardiovascular drugs

are known to reduce mortality within months of treatment (Aronow et al., 2001; Cannon et al.,

2004).24 Likewise, Medicaid expansion has been linked to reduced cardiovascular mortality

(Khatana et al., 2019), increased access to vaccinations and antibiotics that can reduce death

from infectious diseases (Lu et al., 2015), and lower indices of kidney failure among non-elderly

adults (Thorsness et al., 2021).

We turn to the SAHIE data discussed in Section III.D . We regress the share of individuals

aged 18 to 64 in a county with health insurance on our measure of fracking potential in Table

3. We find evidence that health insurance coverage increased by 1.6 percentage points, or a

2% increase off the baseline mean, following the fracking boom. Goldin et al. (2021) show that

inducing middle-age adults to enroll in health insurance led to moderate to large declines in

subsequent mortality. A 1.9% relative increase in coverage led to a 6% reduction in mortality,

which is larger than the magnitudes we find here. Sommers (2017) finds that each percentage

point increase in insurance led to a reduction of 3-4 deaths per 100,000, which is smaller than

our estimated reduction of 15 deaths per 100,000. Although we refrain from conducting an IV

analysis due to exclusion restriction concerns, this crude comparison suggests the magnitude

of our mortality results fall in between previous estimates of mortality given the insurance

coverage increase we observe, suggesting that this is a plausible mechanism.

B.10 using data on the number of accidents by vehicle type from the Fatality Analysis Reporting System (FARS). The outcome
for each column is the crude death rate of the number of accidents. These support increases in truck traffic accidents.

23Bartik et al. (2019) find, using the same source of variation as we do, that local government’s increased welfare and hospital
expenditures by approximately 24% after the boom. Although this result was not statistically significant, it suggests that changes
in public health investments may also be a contributing factor to the observed mortality declines.

24Increased income, in addition to expansions in health insurance through increased employment, could also lead to increased
access to these treatments. In other words, gaining employment could increase access to market-based health care inputs in a
health production function as in Grossman (1972).
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While the SAHIE data do not allow us to distinguish whether this increase comes from

employer-sponsored insurance or expansions in public programs such as Medicaid, several

lines of reasoning suggest that private insurance is the likely source of these coverage in-

creases. Recall that employment expands across many sectors beyond oil and gas following

the fracking boom. However, even within oil and gas, anecdotal evidence suggests that frack-

ing jobs provided fairly robust health insurance. Surveys from Rigzone, a large online oil and

gas industry job posting site and career network platform, indicate that Oil and Gas profes-

sionals are accustomed to rich health benefit offerings, and an industry health consultant even

bemoans the fact that generous health packages have become expected, and simply providing

good coverage does not grant a competitive advantage in attracting employees (Jones, 2019).

Given that Medicaid expansions are typically counter-cyclical (CDC, 2009; Jang and Lee,

2023), it is not likely that expansions in economic opportunity from the boom would result

in expansions in Medicaid.25 We can also examine trends in another key means-tested safety

net program: the Supplemental Nutrition Assistance Program (SNAP). Because Medicaid

and SNAP enrollment are often tightly linked at the household level, trends in SNAP par-

ticipation can serve as a useful proxy for shifts in public insurance enrollment.26 We turn to

the US Department of Agriculture (USDA) SNAP Data System to obtain the active number

of participants in SNAP by county between 1997-2011. We restrict our sample to plays that

initiated fracking before 2009 to maintain a balanced panel with multiple pre and post years

around the initiation of fracking. Appendix Figure A.15 presents estimates of Equation (2) for

4 years pre and 3 years post fracking using the share of the county population who are SNAP

participants as the dependent variable, with the DD estimate reported at the top. These

results show a reduction in SNAP participation in top-quartile counties relative to control

counties following the initiation of fracking, with an overall decline of .5 percentage points,

a 4.9% decline from the mean of 11% in the pre-period. Taken together, these findings all

point to private employer-sponsored insurance as the likely source of the observed coverage

increases.
25Similarly, Black et al. (2002) and Black et al. (2003) find reductions in disability payments and welfare expenditures on the

Aid to Families with Dependent Children program from the 1970s coal boom.
26Wagner and Huguelet (2016) estimates that in 2014, about 3/4ths of households receiving SNAP also had a member of their

household receiving health insurance coverage through Medicaid or CHIP.
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V.E Additional Results and Robustness

Our findings suggest symmetric effects between long-term job loss and gains on internal

mortality, while external causes of deaths that may be exacerbated by long-term declines in

economic conditions (e.g. Pierce and Schott, 2020) may not be easily reversed. In this section,

we examine whether migratory responses or the direct health effects of fracking production

play a role in our findings.

V.E.1 Migration

While it is not obvious ex ante that migrants are selected based on higher or lower mortality

risk, particularly among older cohorts (Fletcher et al., 2022), Wilson (2020) found a sizable

migration response to the fracking boom, mainly in the Bakken Shale play, intersecting North

Dakota and Montana. Omitting these two states from our sample leaves our results largely

unchanged (Appendix Figures A.18- A.20).

To adjust for any compositional demographic changes following the boom, Appendix Fig-

ures A.16 and A.17 include controls for the contemporaneous age shares of the relevant pop-

ulation and confirm similar mortality declines as before. Secondly, it may be the case that

our treatment counties had better pre-existing access to healthcare (Finkelstein et al., 2021)

or better prior health behaviors (Couillard et al., 2021) that led to reductions in mortality

for in-migrants. However, in Appendix Figure A.21 we expand on Appendix Figure A.16 and

proxy for such factors by including the baseline county age-adjusted death rate interacted

with year fixed effects and again find similar results.

We also directly test for in-migration by estimating Equation (1) using both the population

and age-shares as the dependent variables. Appendix Tables B.3 and B.4 and Table B.5

show statistically insignificant and modestly sized coefficients, though the point estimates

are positive for the working-age groups.27 Additionally, treatment counties initially had lower

mortality rates than control counties (Table 1), making it unlikely that migration from control

to treatment counties would explain the mortality reductions.28

27Recall for our identification strategy, in or out migration would have to systematically vary between top-quartile and other
counties within the same shale play to drive our results.

28Top-quartile counties have 7 fewer deaths per 100,000 on average compared to bottom quartile counties in the same play in
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Finally, we perform several bounding exercises to gauge whether migration could plausibly

drive our results. Assume there are two types of individuals: stayers (those living in counties

as of the initiation of fracking) and migrants (those who arrive from non-fracking regions in

response to new economic opportunities).29 We can express the post-fracking mortality rate

in treatment counties (M tq) as a weighted average of the mortality rate for stayers (M stayers)

and that of migrants (Mmigrants):

M tq = M stayers × (1− pmigrants) +Mmigrants × pmigrants (3)

where pmigrants is the share of the population who are migrants, and pmigrants + pstayers = 1.

With this framework, we first ask: if stayer mortality remains constant, how much lower

would the mortality rate of movers need to be to generate our results? Conservatively, we

assume stayer mortality is held constant at its pre-treatment (event time -1) level of 424

deaths per 100,000.30 Table 2 shows a reduction of 15 deaths per 100,000, making the observed

post-fracking mortality rate M tq = 424 − 15 = 409. Appendix Table B.3 shows that top-

quartile counties experienced a (statistically insignificant) 1.2% increase in the working-age

population, which we use to approximate pmigrants.31 Plugging these values into Equation

(3) implies that Mmigrants = −826, suggesting that the actual level of population change we

observe cannot feasibly generate the mortality reductions in our estimates alone.

Given this, we relax the assumption that the rising economic opportunity does not lower

mortality for stayers at all. Instead we now ask: if fracking does lead to lower stayer mortality,

how much might we be overstating the effects assuming the healthiest movers? For this

calculation, we assume that migrants arrive solely from Minnesota, the state with the lowest

working-age mortality rate in 2000 (the last pre-treatment year) of 263 deaths per 100,000,

and that they constitute 1.2% of the post-fracking population. We then solve for the implied

the year before the initiation of fracking.
29We assume no out-migrants: people leaving top-quartile counties in response to higher economic opportunity.
30The crude death rate for working-aged adults weakly increases over time, so choosing the death rate in the event year before

fracking provides a more restrictive assumption than linearly interpolating the mortality rate based on the pre-fracking event
years.

31When we observe a 1.2% increase in population, this is approximately equivalent to saying migrants constitute 1.2% of the
post-fracking population. More precisely, if the initial population I increases by a percentage x, then migrants as a share of the
new total population is x∗I

(1+x)∗I = x
1+x

, which for small values of x is very close to x. The average population of working-age

individuals in top-quartile counties in event time -1 was 44,700 people, which implies an average increase of 536 working-age
individuals in treatment counties.
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post-fracking mortality rate of stayers (M stayers). This yields M stayers = 410.8 per 100,000.

Even under the assumption of low mortality in-migrants, stayers’ mortality would still decline

by 13.2 deaths per 100,000, or 88% of the overall observed decline in mortality.

Conversely, we finally ask: given the healthiest possible movers, what is the share of the

post-fracking population that would need to be movers to generate our results? We again

assume that migrants have Minnesota’s low mortality rate of 263 per 100,000 (Mmigrants).

Now solving for pmigrants implies that migrants must constitute 9.3% of the post-fracking

population. This corresponds to a 10.3% increase over the pre-fracking population, roughly

10 times our actual estimate of the population increase of 1.2%.

We can also compare these figures to the migratory response found in the previous lit-

erature. Wilson (2020) finds that a 1% increase in earnings from fracking increased the

population by 0.11%, and examining a similar economic shock, Black et al. (2005) finds that

a 1% increase in earnings from the coal boom increased the population by 0.16%. Appendix

Table B.6 shows that top-quartile counties experienced a 2.7% increase in earnings. To gen-

erate the reduction in mortality we find, a 1% increase in earnings from fracking would need

to generate a 3.8% increase in the population, an elasticity over an order of magnitude larger

than migration responses found in other work.

Overall, these bounding exercises demonstrate that even under assumptions that strongly

favor a migration-based explanation, the observed effects are too large to be plausibly driven

by migratory changes alone.

V.E.2 Direct Effects of Fracking

Our empirical design compares counties within the same shale plays. Given that prior

research documents negative health effects of fracking, especially near drilling sites (Black

et al., 2021; Hill and Ma, 2022; Currie et al., 2017), any direct adverse impact of fracking

would bias against detecting beneficial effects of local economic opportunity as treatment

counties experience more drilling. We find no increase in mortality for those aged 65-99, and

in Appendix Table B.9, we show no changes in infant mortality, both groups that are more
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susceptible to increased morbidity from fracking-induced pollution (Denham et al., 2021; Hill

and Ma, 2022). Together, these results imply that direct fracking-related health effects are

not driving our findings.

Black et al. (2021) stresses the difficulty in obtaining causal evidence within the fracking

and health literature and Bartik et al. (2019) highlight significant imbalances between shale

and non-shale counties. Here, we demonstrate this further in the mortality context by mod-

ifying our identification strategy to include comparisons with counties that do not lie over a

shale play. We keep all counties and redefine our treatment as an indicator equal to one for

all counties that lie over a shale play. Thus, we still refrain from using the endogenous actual

level of extraction as our treatment. Second, we replace our play-by-year fixed effects with

state-by-year fixed effects to only compare shale play counties to other non-shale play counties

within the same state.32 We define the initiation of fracking for each state as the earliest initi-

ation date among the plays that fall within that state. This difference-in-differences strategy

compares the changes in mortality outcomes for shale play counties to those of non-shale play

counties within the same state, after the initiation of fracking relative to before.

Appendix Figure A.22 shows event study estimates of this alternative strategy for overall,

internal, and external mortality, and reports the main difference-in-differences estimate and

standard error above. Notably, there are trends in mortality before the initiation of fracking

among these groups, with internal mortality increasing in shale counties relative to non-

shale countries in the years prior. The difference-in-differences estimation finds a statistically

significant increase in overall and internal mortality. This finding may be driven by these

differential pre-trends or partly by fracking production itself (e.g., pollution). We do not aim

to distinguish this here, but this exercise complements Bartik et al. (2019) and Black et al.

(2021) by stressing the importance of making the correct comparisons when identifying the

mortality impacts from the economic opportunity generated by the fracking boom.

32Note that this effectively identifies the estimate only from counties that reside in a state that overlaps with a shale play.
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VI Conclusion

While a growing body of evidence finds negative mental and physical health consequences

of unemployment, we know less about the role that increased earnings and employment play

in terms of mortality. This question has become even more policy salient recently, as Case

and Deaton (2017) have linked declining labor market opportunities to rising suicide, drug-

related and alcohol mortality, and the subsequent decline in life expectancy in the US. We

show that the positive labor demand shocks driven by the fracking boom led to decreased

mortality. While we do not find robust evidence that “deaths of despair” decline in response

to these positive labor demand shifts, we do find that treatable, internal causes of death

decline. Along with suggestive evidence that health insurance increased, our findings suggest

a potential channel behind the positive income and life expectancy gradient (Chetty et al.,

2016).
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VII Figures

Figure 1: Hydraulic Fracturing Potential and Production - Rystad Prospectivity Index (RPI)

Panel A: Mapping RPI by US Counties

Panel B: County-Level Fracking Production by RPI
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Notes: Panel A plots all US counties from the lower 48 states using 2000 census boundaries. White counties do not intersect
with a shale play and are unable to benefit from the fracking boom. Lightly shaded counties (control) intersect with a shale play
and are in the bottom three quartiles of the RPI, our measure of fracking potential discussed in Section III.A. Darkly shaded
counties (treated) intersect with a shale play and are in the top-quartile of the RPI within a specific shale play. Shale play
borders are not shown here for visual clarity. Panel B plots oil and natural gas production measured in millions of barrels of oil
equivalent units (BOE) produced by horizontally-drilled wells. These aggregate amounts are calculated from monthly, well-level
production data from Enverus. The number of shale plays adopting fracking technology in a specific year (as identified by Bartik
et al. (2019), are shown using the shaded gray bars.
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Figure 2: Earnings and Employment Effects by Gender

Panel A: Log of Male Earnings
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Panel B: Log of Female Earnings
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Panel C: Log of Male Employment to Pop. Ratio
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Panel D: Log of Female Employment to Pop. Ratio
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Notes: Each panel reports the point estimates with their associated 95% confidence intervals from Equation (2) for the balanced
set of event-years. We take earnings measures (adjusted to real 2010 $ amounts) and employment counts from the QWI
database. We take population counts from SEER. All values are calculated for 14-99 year old individuals in each county. Each
regression includes interactions of a full set of year dummies (excluding 1990) with time-invariant county characteristics from
the 1990 census and 2000 county-level population weights. Standard errors are adjusted for clustering at the county level. The
difference-in-differences coefficient for each outcome is included above each event study, as well as the relevant standard error
in brackets. *** Significance 1%, ** 5%, * 10%.
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Figure 3: Overall Mortality by Gender

Panel A: Men and Women
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Panel B: Men

-5
0

-4
0

-3
0

-2
0

-1
0

0
10

20
30

40
50

C
oe

ffi
ci

en
t E

st
im

at
e

-10 -5 0 5
Year Relative to Fracking's Introduction

Top-Quartile × Post = -16.988*** [5.203]

Panel C: Women
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Notes: Each panel reports the point estimates with their associated 95% confidence intervals from Equation (2) for the balanced
set of event-years. The dependent variable is the death rate per 100,000 people, using contemporaneous populations. We take
all death count data from the CDC’s National Center for Health Statistics from 1990-2018. We take population counts for the
same time period from SEER. Each regression includes interactions of a full set of year dummies (excluding 1990) with time-
invariant county characteristics from the 1990 census and 2000 county-level population weights. Standard errors are adjusted
for clustering at the county level. The difference-in-differences coefficient for each outcome is included above each event study,
as well as the relevant standard error in brackets. *** Significance 1%, ** 5%, * 10%.
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Figure 4: Internal vs. External Causes of Death

Panel A: Internal Causes of Death
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Panel B: External Causes of Death
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Notes: Each panel reports the point estimates with their associated 95% confidence intervals from Equation (2) for the balanced
set of event-years. Dependent variables are the crude death rate per 100,000 individuals of working age. Panel A reports internal
deaths and Panel B reports external deaths. We take all death count data from the CDC’s National Center for Health Statistics
from 1990-2018. We take population counts for the same time period from SEER. Death categories are taken from Stevens et al.
(2015), and represent consistent definitions across ICD-9 and ICD-10 cause of death codes. All regressions were estimated using
interactions of a full set of year dummies (excluding 1990) with time-invariant county characteristics from the 1990 census and
2000 county-level population weights. Standard errors are adjusted for clustering at the county level.
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Figure 5: Internal Causes: Cardiovascular vs Other Internal Mortality

Panel A: Cardiovascular
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Panel B: Non-Cardiovascular
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Notes: Each panel reports the point estimates with their associated 95% confidence intervals from Equation (2) for the balanced
set of event-years. The dependent variables are the crude death per 100,000 individuals of working age for cardiovascular
(Panel A) and non-cardiovascular internal (Panel B) mortality. We take all death count data from the CDC’s National Center
for Health Statistics from 1990-2018. We take population counts for the same time period from SEER. All regressions were
estimated using interactions of a full set of year dummies (excluding 1990) with time-invariant county characteristics from the
1990 census and 2000 county-level population weights. Standard errors are adjusted for clustering at the county level.
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VIII Tables

Table 1: Summary Statistics - Treatment and Control Comparisons (1990 Variables)

(1) (2) (3)
Top-Quartile County Other Shale Play County Within Play Difference

% High School Graduates 34.90 34.83 -0.87
(7.94) (6.25) [0.56]

% in Manufacturing 5.22 5.89 0.42
(3.88) (4.54) [0.39]

% White 91.04 90.88 -0.56
(10.16) (10.17) [0.72]

% Married 60.76 60.16 -0.38
(5.66) (5.40) [0.50]

% Rural 63.74 61.71 -4.48
(32.11) (28.68) [3.01]

% Veterans 14.59 14.66 -0.03
(2.38) (2.14) [0.23]

% Foreign Born 2.80 2.33 -0.32
(3.82) (2.97) [0.32]

% w/ a Bachelors Degree 9.57 8.77 -0.18
(4.55) (3.54) [0.34]

Median Household Income 30532.81 29815.35 -111.46
(7878.33) (6442.70) [597.67]

Age-Adjusted Death Rate 906.23 916.07 -2.60
(146.75) (124.18) [15.17]

Observations 112 407 519

Notes: All variables are measured at the county-level in 1990. Aside from the age-adjusted death rate,
all variables are taken from the 1990 Decennial Census. The age-adjusted death rate is calculated using
mortality data from the CDC’s National Center for Health Statistics, and all the population data come
from SEER. Column (3) reports the regression-adjusted difference between top-quartile counties and other
counties in the same shale play (only play-specific fixed effects are controlled for), with standard errors in
brackets.
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Table 2: Working-Age Overall Mortality Rates by Gender

Panel A: Overall
(1) (2) (3)

Top-Quartile × Post -9.466 -14.701*** -15.422***
[6.8753] [5.5817] [4.1062]

Controls No Base All
Observations 9,341 9,341 9,341
Outcome Mean 438.35 438.35 438.35
R2 0.867 0.873 0.881

Panel B: Men
(1) (2) (3)

Top-Quartile × Post -8.962 -16.089** -16.988***
[7.8050] [6.6549] [5.2032]

Controls No Base All
Observations 9,341 9,341 9,341
Outcome Mean 542.48 542.48 542.48
R2 0.823 0.830 0.837

Panel C: Women
(1) (2) (3)

Top-Quartile × Post -10.527 -13.677** -14.094***
[6.8750] [5.4459] [4.0830]

Controls No Base All
Observations 9,341 9,341 9,341
Outcome Mean 333.78 333.78 333.78
R2 0.745 0.751 0.761

Notes: *** Significance 1%, ** Significance 5%, * Significance 10%. Dependent variables are the crude death rate per 100,000
individuals. Panel A reports uses death rates for both men and women, Panel B for men, and Panel C for women. Column (1)
uses no controls, Column (2) adds controls for baseline socioeconomic factors (percent high school educated, percent manufac-
turing, and percentage white), and column (3) adds the remaining controls from Table (1), all taken from the 1990 Census. All
controls include interactions of a full set of year dummies (excluding 1990), regressions include 2000 county-level population
weights. Standard errors are adjusted for clustering at the county level.

Table 3: Health Insurance Coverage by Gender: Ages 18-64

(1) (2) (3)
Overall Men Women

Top-Quartile × Post 0.016*** 0.015*** 0.018***
[0.0048] [0.0051] [0.0047]

Controls All All All
Outcome Mean 0.81 0.79 0.82
Observations 1,208 1,208 1,208

Notes: *** Significance 1%, ** Significance 5%, * Significance 10%. We take all insurance estimates from the Small Area
Health Insurance Estimates (SAHIE) Program. The sample is restricted to plays that began fracking after 2008, the first year
of data availability. All columns include interactions of a full set of year dummies (excluding 1990) with time-invariant county
characteristics from the 1990 census. Standard errors are adjusted for clustering at the county level.
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A Appendix Figures

Figure A.1: Horizontal Well Production: Millions of $ of BOE
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Top-Quartile Indicator× Post = 136*** [47]
RPI Index (SD Shift)× Post = 57*** [22]

Notes: Each panel reports the point estimates with their associated 95% confidence intervals from Equation (2) for the balanced
set of event-years. Here, we show coefficients from 2 separate regressions where the coefficient of interest is a different transfor-
mation of the RPI. Monthly, well-level production of oil and natural gas data from Enverus, and we aggregate these amounts to
the county-level using the latitude and longitude of each well. We use yearly price data from the EIA to calculate the value of
fracking production in millions of dollars, transformed into real, 2010 $ using the PCEPI. Each regression includes interactions
of a full set of year dummies (excluding 1990) with time-invariant county characteristics from the 1990 census and 2000 county-
level population weights. Standard errors are adjusted for clustering at the county level. The difference-in-differences coefficient
for each outcome is included above each event study, as well as the relevant standard error in brackets. *** Significance 1%, **
5%, * 10%.
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Figure A.2: Age-Adjusted Overall Mortality per 100,000

Panel A: Men and Women
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Top-Quartile × Post = -8.870** [3.885]

Panel B: Men
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Top-Quartile × Post = -6.063 [3.702]

Panel C: Women
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Top-Quartile × Post = -9.938** [5.013]

Notes: Each panel reports the point estimates with their associated 95% confidence intervals from Equation (2) for the balanced
set of event-years. We take all death count data from the CDC’s National Center for Health Statistics from 1990-2018. We take
population counts for the same time period from SEER. We use the standard method for age-adjustment by taking a weighted
average of the crude death rates for different age categories within a county, where the national population shares in those
age categories in 2000 are the weights. Each regression includes interactions of a full set of year dummies (excluding 1990)
with time-invariant county characteristics from the 1990 census and 2000 county-level population weights. Standard errors are
adjusted for clustering at the county level. The difference-in-differences coefficient for each outcome is included above each event
study, as well as the relevant standard error in brackets. *** Significance 1%, ** 5%, * 10%.
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Figure A.3: Crude Overall Mortality Rate per 100,000: No Controls

Panel A: Men and Women
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Panel C: Women
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Notes: Each panel reports the point estimates with their associated 95% confidence intervals from Equation (2) for the balanced
set of event-years. We take all death count data from the CDC’s National Center for Health Statistics from 1990-2018. We
take population counts for the same time period from SEER. The dependent variable is the death rate per 100,000 people, using
contemporaneous populations. Each regression uses 2000 county-level population weights. Standard errors are adjusted for
clustering at the county level. The difference-in-differences coefficient for each outcome is included above each event study, as
well as the relevant standard error in brackets. *** Significance 1%, ** 5%, * 10%.
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Figure A.4: Poisson Regressions: Overall Mortality

Panel A: Men and Women
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Panel C: Women
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Notes: Each panel reports the point estimates with their associated 95% intervals from a Poisson regression based off of Equa-
tion (2) for the balanced set of event-years, using the relevant gender and age population as the exposure variable. We report

the transformed coefficients eβ̂ − 1 using endpoint transformation for confidence limits. We take all death count data from the
CDC’s National Center for Health Statistics from 1990-2018. We take population counts for the same time period from SEER.
Each regression includes interactions of a full set of year dummies (excluding 1990) with time-invariant county characteristics
from the 1990 census. Standard errors are adjusted for clustering at the county level. The transformed difference-in-differences
Poisson coefficient for each outcome is included above each event study, as well as the relevant standard error in brackets. ***
Significance 1%, ** 5%, * 10%.
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Figure A.5: Overall Mortality Effects by Age

Panel A: Ages: Under 25
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Panel C: Ages: 45-64
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Panel D: Ages: 65-99
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Notes: Each panel reports the point estimates with their associated 95% confidence intervals from Equation (2) for the balanced
set of event-years. The dependent variable is the death rate per 100,000 individuals of the given age group. We take all death
count data from the CDC’s National Center for Health Statistics from 1990-2018. We take population counts for the same time
period from SEER. Each regression includes interactions of a full set of year dummies (excluding 1990) with time-invariant
county characteristics from the 1990 census and 2000 county-level population weights. Standard errors are adjusted for clustering
at the county level. The difference-in-differences coefficient for each outcome is included above each event study, as well as the
relevant standard error in brackets. *** Significance 1%, ** 5%, * 10%.
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Figure A.6: Overall Mortality Effects by Age: Male

Panel A: Ages: Under 25
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Panel B: Ages: 25-44
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Panel C: Ages: 45-64
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Panel D: Ages: 65-99
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Notes: Each panel reports the point estimates with their associated 95% confidence intervals from Equation (2) for the balanced
set of event-years. The dependent variable is the death rate per 100,000 individuals of the given age group. We take all death
count data from the CDC’s National Center for Health Statistics from 1990-2018. We take population counts for the same time
period from SEER. Each regression includes interactions of a full set of year dummies (excluding 1990) with time-invariant
county characteristics from the 1990 census and 2000 county-level population weights. Standard errors are adjusted for clustering
at the county level. The difference-in-differences coefficient for each outcome is included above each event study, as well as the
relevant standard error in brackets. *** Significance 1%, ** 5%, * 10%.
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Figure A.7: Overall Mortality Effects by Age: Female

Panel A: Ages: Under 25
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Panel C: Ages: 45-64
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Notes: Each panel reports the point estimates with their associated 95% confidence intervals from Equation (2) for the balanced
set of event-years. The dependent variable is the death rate per 100,000 individuals of the given age group. We take all death
count data from the CDC’s National Center for Health Statistics from 1990-2018. We take population counts for the same time
period from SEER. Each regression includes interactions of a full set of year dummies (excluding 1990) with time-invariant
county characteristics from the 1990 census and 2000 county-level population weights. Standard errors are adjusted for clustering
at the county level. The difference-in-differences coefficient for each outcome is included above each event study, as well as the
relevant standard error in brackets. *** Significance 1%, ** 5%, * 10%.
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Figure A.8: Crude Death Rates: Internal and External Causes of Death by Gender

Panel A: Internal Death Rates per 100,000: Male
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Panel B: Internal Death Rates per 100,000: Female
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Panel C: External Death Rates per 100,000: Male
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Panel D: External Death Rates per 100,000: Female
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Notes: Each panel reports the point estimates with their associated 95% confidence intervals from Equation (2) for the balanced
set of event-years. We take all death count data from the CDC’s National Center for Health Statistics from 1990-2018. We take
population counts for the same time period from SEER. Dependent variables are the crude death rate per 100,000 individuals of
working age. Each regression includes interactions of a full set of year dummies (excluding 1990) with time-invariant county
characteristics from the 1990 census and 2000 county-level population weights. Standard errors are adjusted for clustering at
the county level. The difference-in-differences coefficient for each outcome is included above each event study, as well as the
relevant standard error in brackets. *** Significance 1%, ** 5%, * 10%.
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Figure A.9: External Causes of Death: Deaths of Despair

Panel A: Drug Overdoses
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Panel B: Suicides

-1
2

-6
0

6
12

C
oe

ffi
ci

en
t E

st
im

at
e

-10 -5 0 5
Year Relative to Fracking's Introduction

Top-Quartile × Post = -0.833 [0.543]

Panel C: Alcohol Related
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Top-Quartile × Post = 0.018 [0.367]

Notes: Each panel reports the point estimates with their associated 95% confidence intervals from Equation (2) for the balanced
set of event-years. The dependent variable is the death rate per 100,000 people of drug overdose (Panel A), suicide (Panel B),
and alcohol-related (Panel C) mortality. We take all death count data from the CDC’s National Center for Health Statistics from
1990-2018. We take population counts for the same time period from SEER. All regressions were estimated using interactions
of a full set of year dummies (excluding 1990) with time-invariant county characteristics from the 1990 census and 2000 county-
level population weights. Standard errors are adjusted for clustering at the county level.
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Figure A.10: Poisson Regression: Internal vs. External Causes of Death (Ages 25-64)

Panel A: Poisson Regression: Internal Causes of Death
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Panel B: Poisson Regression: External Causes of Death
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Notes: Each panel reports the point estimates with their associated 95% intervals from a Poisson regression based off of Equa-
tion (2) for the balanced set of event-years, using the relevant gender and age population as the exposure variable. We report

the transformed coefficients eβ̂ − 1 using endpoint transformation for confidence limits. We take all death count data from
the CDC’s National Center for Health Statistics from 1990-2018. Death categories are taken from Stevens et al. (2015), and
represent consistent definitions across ICD-9 and ICD-10 cause of death codes. All regressions were estimated using interactions
of a full set of year dummies (excluding 1990) with time-invariant county characteristics from the 1990 census. Standard errors
are adjusted for clustering at the county level.
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Figure A.11: Poisson Regressions: Internal and External Causes of Death by Gender

Panel A: Internal Deaths (Male)
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Panel B: Internal Deaths (Female)
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Panel C: External Deaths (Male)
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Panel D: External Deaths (Female)
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Notes: Each panel reports the point estimates with their associated 95% intervals from a Poisson regression based off of Equa-
tion (2) for the balanced set of event-years, using the relevant gender and age population as the exposure variable. We report

the transformed coefficients eβ̂ − 1 using endpoint transformation for confidence limits. We take all death count data from
the CDC’s National Center for Health Statistics from 1990-2018. Death categories are taken from Stevens et al. (2015), and
represent consistent definitions across ICD-9 and ICD-10 cause of death codes. All regressions were estimated using interactions
of a full set of year dummies (excluding 1990) with time-invariant county characteristics from the 1990 census. Standard errors
are adjusted for clustering at the county level.
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Figure A.12: Poisson Regression: Cardiovascular vs. Other Internal Causes of Death (Ages
25-64)

Panel A: Cardiovascular Mortality
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Panel B: Other Internal Mortality
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Top-Quartile × Post = -0.026** [0.010]

Notes: Each panel reports the point estimates with their associated 95% intervals from a Poisson regression based off of Equa-
tion (2) for the balanced set of event-years, using the relevant gender and age population as the exposure variable. We report

the transformed coefficients eβ̂ − 1 using endpoint transformation for confidence limits. We take all death count data from the
CDC’s National Center for Health Statistics from 1990-2018. All regressions were estimated using interactions of a full set of
year dummies (excluding 1990) with time-invariant county characteristics from the 1990 census. Standard errors are adjusted
for clustering at the county level.
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Figure A.13: Poisson Regressions: Deaths of Despair

Panel A: Drug Overdoses
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Panel B: Suicides
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Panel C: Alcohol Related
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Top-Quartile × Post = 0.014 [0.038]

Notes: Each panel reports the point estimates with their associated 95% intervals from a Poisson regression based off of Equa-
tion (2) for the balanced set of event-years, using the relevant gender and age population as the exposure variable. We report

the transformed coefficients eβ̂ − 1 using endpoint transformation for confidence limits. We take all death count data from the
CDC’s National Center for Health Statistics from 1990-2018. All regressions were estimated using interactions of a full set of
year dummies (excluding 1990) with time-invariant county characteristics from the 1990 census. Standard errors are adjusted
for clustering at the county level.

53



Figure A.14: Internal and External Causes of Death: Differences by Gender

Panel A: Internal Causes
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Panel B: External Causes
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Notes: We take all death count data from the CDC’s National Center for Health Statistics from 1990-2018. We take population
counts for the same time period from SEER. Death categories are taken from Stevens et al. (2015), and represent consistent
definitions across ICD-9 and ICD-10 cause of death codes. The definitions of suicides, drug-related and alcohol-related deaths
are taken from the Joint Economic Committee of the United States Congress. Each point represents the outcome from a separate
regression (Equation (1)), and the bars represent the associated 95% confidence intervals. All regressions were estimated using
interactions of a full set of year dummies (excluding 1990) with time-invariant county characteristics from the 1990 census and
2000 county-level population weights. Standard errors are adjusted for clustering at the county level.
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Figure A.15: SNAP Benefits
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Top-Quartile × Post = -0.005*** [0.002]

Notes: Figure reports the point estimates with their associated 95% confidence intervals from Equation (2) for a balanced set of
event-years. The dependent variable is the share of a county’s population receiving Supplemental Nutrition Assistance Program
(SNAP) benefits. Data is taken from the USDA’s SNAP Data System. We take population counts for the same time period
from SEER. We restrict our sample to plays that initiated fracking before 2009 to maintain a balanced panel, with SNAP data
spanning 1997-2011. All regressions were estimated using interactions of a full set of year dummies with time-invariant county
characteristics from the 1990 census. Standard errors are adjusted for clustering at the county level *** Significance 1%, **
5%, * 10%.
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Figure A.16: Overall Mortality: Controlling for Compositional Changes

Panel A: Men and Women
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Panel B: Men
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Panel C: Women
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Notes: Each panel reports the point estimates with their associated 95% confidence intervals from Equation (2) for the balanced
set of event-years. The dependent variable is the overall death rate per 100,000 individuals, and we control for the contempora-
neous shares of relevant gender population belonging to the age categories 0-24, 25-44, 45-64, and 65-99. We take all death count
data from the CDC’s National Center for Health Statistics from 1990-2018. We take population counts for the same time period
from SEER. Each regression includes interactions of a full set of year dummies (excluding 1990) with time-invariant county
characteristics from the 1990 census and 2000 county-level population weights. Standard errors are adjusted for clustering at
the county level. The difference-in-differences coefficient for each outcome is included above each event study, as well as the
relevant standard error in brackets. *** Significance 1%, ** 5%, * 10%.
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Figure A.17: Internal and External Causes of Death: Controlling for Compositional Changes

Panel A: Internal Deaths (Male)
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Panel B: Internal Deaths (Female)
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Panel C: External Deaths (Male)
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Panel D: External Deaths (Female)
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Notes: Each panel reports the point estimates with their associated 95% confidence intervals from Equation (2) for the balanced
set of event-years. We take all death count data from the CDC’s National Center for Health Statistics from 1990-2018. We
take population counts for the same time period from SEER. Our primary outcome is the death rate per 100,000 individuals,
where the contemporaneous shares of the relevant demographic group for the ages 0-24, 25-44, 45-64, and 65-99 are included
as controls. Each regression includes interactions of a full set of year dummies (excluding 1990) with time-invariant county
characteristics from the 1990 census and 2000 county-level population weights. Standard errors are adjusted for clustering at
the county level. The difference-in-differences coefficient for each outcome is included above each event study, as well as the
relevant standard error in brackets. *** Significance 1%, ** 5%, * 10%.
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Figure A.18: Overall Mortality by Gender: No Bakken Shale Play

Panel A: Men and Women
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Panel B: Men
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Panel C: Women
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Notes: Each panel reports the point estimates with their associated 95% confidence intervals from Equation (2) for the balanced
set of event-years. The dependent variable is the death rate per 100,000 people, using contemporaneous populations. We take all
death count data from the CDC’s National Center for Health Statistics from 1990-2018. We take population counts for the same
time period from SEER. Each regression includes interactions of a full set of year dummies (excluding 1990) with time-invariant
county characteristics from the 1990 census and 2000 county-level population weights, and drop observations from the Bakken
shale play. Standard errors are adjusted for clustering at the county level. The difference-in-differences coefficient for each
outcome is included above each event study, as well as the relevant standard error in brackets. *** Significance 1%, ** 5%, *
10%.
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Figure A.19: Internal vs. External Causes of Death: No Bakken Shale Play

Panel A: Internal Causes of Death
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Panel B: External Causes of Death
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Notes: Each panel reports the point estimates with their associated 95% confidence intervals from Equation (2) for the balanced
set of event-years. Dependent variables are the crude death rate per 100,000 individuals of working age. Panel A reports
internal deaths and Panel B reports external deaths. We take all death count data from the CDC’s National Center for Health
Statistics from 1990-2018. We take population counts for the same time period from SEER. Death categories are taken from
Stevens et al. (2015), and represent consistent definitions across ICD-9 and ICD-10 cause of death codes. All regressions were
estimated using interactions of a full set of year dummies (excluding 1990) with time-invariant county characteristics from the
1990 census and 2000 county-level population weights, and drop observations from the Bakken shale play. Standard errors are
adjusted for clustering at the county level.
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Figure A.20: Men/Women Working-Age Mortality Robustness

Notes:We take all death count data from the CDC’s National Center for Health Statistics from 1990-2018. We take population
counts for the same time period from SEER. Death categories are taken from Stevens et al. (2015), and represent consistent
definitions across ICD-9 and ICD-10 cause of death codes. Each point represents the outcome from a separate regression
(Equation (1), and the dark and lighter shaded bars represent the associated 90% and 95% confidence intervals, respectively.
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Figure A.21: Mortality: Geographic/Place Based Factors

Panel A: Overall Mortality
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Top-Quartile × Post = -13.162*** [4.457]

Panel B: Internal Causes of Death
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Panel C: External Causes of Death
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Notes: Each panel reports the point estimates with their associated 95% confidence intervals from Equation (2) for the balanced
set of event-years. The dependent variable is the death rate per 100,000 people, using contemporaneous populations. We take
all death count data from the CDC’s National Center for Health Statistics from 1990-2018. We take population counts for
the same time period from SEER. Each regression includes interactions of a full set of year dummies (excluding 1990) with
time-invariant county characteristics from the 1990 census and 2000 county-level population weights. We additionally control
for the log of the contemporaneous working-aged population as well as the baseline 1990 age-adjusted mortality rate interacted
with year fixed effects. Standard errors are adjusted for clustering at the county level. The difference-in-differences coefficient
for each outcome is included above each event study, as well as the relevant standard error in brackets. *** Significance 1%, **
5%, * 10%.
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Figure A.22: Potential Confounding: Comparing Shale to No-Shale Counties within State

Panel A: Overall Mortality
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Panel B: Internal Mortality
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Panel C: External Mortality
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Notes: Represents an alternative specification to Equation (2) where we compare counties that reside over any shale play
compared to those that do not reside under a shale play, within the same state. This is done in practice by defining treatment
as an indicator equal to one if the county resides over any shale play, and including state-year fixed effects. The initiation
of fracking in each state is defined as the earliest fracking date among plays within a state’s border. Each panel reports the
point estimates with their associated 95% confidence intervals. We take population counts for the same time period from SEER.
Dependent variables are the crude death rates of the relevant cause of death, controlling for the relevant contemporaneous
population. Each regression includes interactions of a full set of year dummies (excluding 1990) with time-invariant county
characteristics from the 1990 census and 2000 county-level population weights. Standard errors are adjusted for clustering at
the county level. The difference-in-differences coefficient for each outcome is included above each event study, as well as the
relevant standard error in brackets. *** Significance 1%, ** 5%, * 10%.
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B Appendix Tables

Table B.1: Lower 48 States and Fracking Counties Comparison (1990 Variables)

(1) (2) (3)
Any Shale Play No Shale Play Diff.

Age-Adjusted Death Rate 913.94 930.40 -16.46∗∗

(129.30) (141.21) [6.32]
Median Household Income 29970.18 31353.13 -1382.95∗∗∗

(6776.52) (8703.30) [343.13]
% High School Graduates 34.85 34.19 0.66∗

(6.64) (6.04) [0.31]
% in Manufacturing 5.75 8.61 -2.87∗∗∗

(4.41) (6.48) [0.23]
% Married 60.29 58.84 1.45∗∗∗

(5.46) (6.61) [0.27]
% Rural 62.15 63.67 -1.52

(29.44) (30.05) [1.42]
% Veterans 14.65 14.80 -0.15

(2.19) (2.86) [0.11]
% White 90.91 86.77 4.14∗∗∗

(10.15) (16.14) [0.55]
% Foreign Born 2.43 2.17 0.26

(3.17) (3.67) [0.16]
% w/ a Bachelors Degree 8.94 9.02 -0.08

(3.79) (4.30) [0.19]

Observations 519 2,589 3,108

Notes: All variables are measured at the county-level in 1990. Aside from the
age-adjusted death rate, all variables are taken from the 1990 Decennial Census.
The age-adjusted death rate is calculated using mortality data from the CDC’s
National Center for Health Statistics, and all the population data come from
SEER.
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Table B.2: Age - Specific Mortality Rates by Gender

Panel A: Overall
(1) (2) (3) (4)
0-24 25-44 45-64 65+

Top-Quartile × Post 1.460 -5.576 -23.840*** -8.647
[1.0236] [3.7229] [4.9379] [22.4589]

Controls All All All All
Observations 9,342 9,342 9,342 9,341
Outcome Mean 79.55 178.18 694.88 5082.60

Panel B: Men
(1) (2) (3) (4)
0-24 25-44 45-64 65+

Top-Quartile × Post 2.176 -6.289 -26.615*** 1.907
[1.7377] [5.2397] [6.4912] [28.2087]

Controls All All All All
Observations 9,342 9,342 9,342 9,341
Outcome Mean 99.85 230.68 857.35 5444.59

Panel C: Women
(1) (2) (3) (4)
0-24 25-44 45-64 65+

Top-Quartile × Post 0.616 -4.900 -21.319*** -12.019
[1.2323] [3.1592] [5.7370] [26.4568]

Controls All All All All
Observations 9,342 9,342 9,342 9,341
Outcome Mean 57.96 124.96 533.87 4816.93

Notes: *** Significance 1%, ** Significance 5%, * Significance 10%.
Dependent variables are the crude death rate per 100,000 individuals.
Panel A reports uses death rates for both men and women, Panel B
for men, and Panel C for women. All regressions include the full set
of controls from Table (1), taken from the 1990 Census. All controls
include interactions of a full set of year dummies (excluding 1990),
and include 2000 county-level population weights. Standard errors are
adjusted for clustering at the county level.
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Table B.8: Age-Adjusted Overall Mortality Rates by Gender

Men and Women Men Women

(1) (2) (3) (4) (5) (6)

Top-Quartile × Post -8.870** -9.428** -6.063 -6.893* -9.938** -10.19**
(3.885) (3.867) (3.702) (3.670) (5.013) (5.039)

Omits ND & MT? NO YES NO YES NO YES
Outcome Mean 853.90 861.83 851.71 858.85 851.09 860.72
Observations 9,341 8,711 9,341 8,711 9,341 8,711

Notes: *** Significance 1%, ** Significance 5%, * Significance 10%. All death rates
are age-adjusted using the national age distribution across standard age categories in
2000 to eliminate bias caused by changing demographics over time. All columns include
interactions of a full set of year dummies (excluding 1990) with time-invariant county
characteristics from the 1990 census. Some columns also omit all observations from
North Dakota and Montana, and include 2000 county-level population weights. Standard
errors are adjusted for clustering at the county level.

Table B.9: Infant Mortality Rates

Overall Men Women

(1) (2) (3)

Top-Quartile × Post -0.199 -0.314 -0.088
[0.1559] [0.2281] [0.2081]

Controls YES YES YES
Outcome Mean 6.84 7.57 6.15
Observations 9,341 9,341 9,341

Notes: *** Significance 1%, ** Significance 5%, *
Significance 10%. The dependent variable is the in-
fant mortality rate, defined as the number of deaths to
children under 1 per 1000 population under one. All
columns include interactions of a full set of year dum-
mies (excluding 1990) with time-invariant county char-
acteristics from the 1990 census. Regressions include
2000 county-level population weights. Standard errors
are adjusted for clustering at the county level.

Table B.10: Traffic Accidents by Vehicle Type

All Vehicles Any Truck Involved No Truck Involved
(1) (2) (3)

Top-Quartile × Post 1.185*** 0.610*** 0.575*
[0.446] [0.206] [0.332]

Controls All All All
Outcome Mean 25.28 4.64 20.65
Observations 9,342 9,342 9,342

Notes: *** Significance 1%, ** Significance 5%, * Significance 10%. All columns
include interactions of a full set of year dummies (excluding 1990) with time-
invariant county characteristics from the 1990 census. Standard errors are adjusted
for clustering at the county level.
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